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(57) ABSTRACT

Some implementations of the disclosure are directed to
tapping input/output (I/O) data from an industrial control
system (ICS) or applying the tapped 1/O data to a learned
model to perform predictive or prescriptive maintenance. In
one implementation, a method comprises: tapping /O data
from a controller of an ICS while the controller executes first
control code to control one or more devices of the ICS;
transmitting the tapped /O data over a network to a second
system; and executing, via the second system, second con-
trol code comprising an original or modified version of all or
a subset of the first control code of the ICS, wherein the
second control code executes in response to receiving the
tapped I/O data. The output of executing the second control
code may be provided to a model to predict a future event
involving the ICS or to prescribe maintenance of the ICS.
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INDUSTRIAL CONTROL SYSTEM DATA TAP
AND MODEL FOR MANAGING
INDUSTRIAL CONTROL SYSTEM

BRIEF SUMMARY OF THE DISCLOSURE

[0001] Some implementations of the disclosure are
directed to tapping input/output (I/O) data from an industrial
control system (ICS) or applying the tapped /O data to a
learned model to perform predictive or prescriptive main-
tenance.

[0002] In one embodiment, a method comprises: tapping
1/O data from a controller of an ICS while the controller
executes first control code to control one or more ICS
devices of the ICS; transmitting the tapped I/O data over a
communications network to a second system; and executing,
via the second system, second control code comprising an
original or modified version of all or a subset of the first
control code of the ICS, wherein the second control code
executes in response to receiving the tapped /O data. In
some implementations, the controller is a programmable
logic controller.

[0003] In some implementations, the second control code
is configured to execute a process of the first control code at
a faster rate than it is executed by the first control code, or
the second control code is configured to execute a process
that is not executed by the first control code. In particular
implementations, execution of the first control code by the
ICS generates a first human readable ICS text output pro-
viding an indication of a first parameter of the ICS, and
wherein execution of the second control code generates the
first human readable ICS text output and a second human
readable ICS text output providing an indication of a second
parameter of the ICS, wherein the second human readable
ICS text output is not generated by execution of the first
control code.

[0004] In some implementations, the second control code
is executed using a virtual machine of the second system.
The virtual machine may be configured to use the tapped I/O
data to emulate a processing device of the controller, input
components of the controller, and output components of the
controller.

[0005] In some implementations, the method further com-
prises: providing an output of the execution of the second
control code to a trained model to predict a future event
involving the ICS or to prescribe maintenance of the ICS.
[0006] In some implementations, the method further com-
prises: running, via the second system, a digital twin that
provides a virtual representation of a device, process, or
system of the ICS, wherein the digital twin is run using the
tapped /O data. The digital twin may provide the virtual
representation using one or more physics models represent-
ing the device, process, or system. In some implementations,
the method further comprises: providing i) an output of the
execution of the second control code and ii) an output of
running the digital twin to a trained model to predict a future
event involving the ICS or to prescribe maintenance of the
ICS.

[0007] In some implementations, the method further com-
prises: extracting, via the second system, human readable
text output from the tapped 1/O data, wherein the human
readable text output provides an indication of a parameter of
the ICS. In some implementations, the method further
comprises: providing i) an output of the execution of the
second control code and ii) an output of running the digital
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twin; and iii) the extracted human readable text output to a
trained model to predict a future event involving the ICS or
to prescribe maintenance of the ICS.

[0008] In one embodiment, a non-transitory computer-
readable medium has executable instructions stored thereon
that, when executed by a processor, performs operations of:
receiving at a second system, over a communications net-
work, I/O data tapped from a controller of an ICS while the
controller executes first control code to control one or more
ICS devices of the ICS; and executing, via the second
system, second control code comprising an original or
modified version of all or a subset of the first control code
of the ICS, wherein the second control code executes in
response to receiving the tapped /O data. The second
control code may be configured to: execute a process of the
first control code at a faster rate than it is executed by the
first control code; or execute a process that is not executed
by the first control code.

[0009] In one embodiment, a system comprises: an ICS, a
network data tap and a second system. The ICS may
comprise one or more ICS devices; and a controller config-
ured to execute first control code to control the one or more
ICS devices, wherein execution of the first control code
causes the ICS to generate /O data. The network data tap
may be configured to tap the I/O data from the controller and
transmit the tapped 1/O data to the second system over a
communications network. The second system may be con-
figured to execute second control code comprising an origi-
nal or modified version of all or a subset of the first control
code, wherein the second control code executes in response
to receiving the tapped I/O data.

[0010] Other features and aspects of the disclosed method
will become apparent from the following detailed descrip-
tion, taken in conjunction with the accompanying drawings,
which illustrate, by way of example, the features in accor-
dance with embodiments of the disclosure. The summary is
not intended to limit the scope of the claimed disclosure,
which is defined solely by the claims attached hereto.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The present disclosure, in accordance with one or
more various embodiments, is described in detail with
reference to the following figures. The figures are provided
for purposes of illustration only and merely depict typical or
example embodiments of the disclosure.

[0012] FIG. 1 illustrates an example industrial control
system (ICS) network system in which one or more learned
models may be used to perform predictive or prescriptive
maintenance of an ICS, in accordance with implementations
of the disclosure.

[0013] FIG. 2 is a block diagram illustrating an example
architecture of the ICS of FIG. 1, in accordance with
implementations of the disclosure.

[0014] FIG. 3 is a block diagram illustrating an example
architecture of a system for creating, training, and testing
one or more learned models to perform predictive or pre-
scriptive maintenance of the ICS of FIG. 1, in accordance
with implementations of the disclosure.

[0015] FIG. 4 is an operational flow diagram illustrating
an example method for using tapped ICS /O data to
generate an ICS dataset for learning one or more models to
perform predictive and prescriptive maintenance of the ICS
of FIG. 1, in accordance with implementations of the
disclosure.
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[0016] FIG. 5 is an operational flow diagram illustrating
an example method for creating, training, and testing one or
more models used to perform predictive and prescriptive
maintenance of the ICS of FIG. 1, in accordance with
implementations of the disclosure.

[0017] FIG. 6 is a block diagram illustrating an example
architecture of the ICS prediction and prediction system of
FIG. 1, in accordance with implementations of the disclo-
sure.

[0018] FIG. 7 is an operational flow diagram illustrating
an example method for using tapped ICS /O data and one
or more models to perform predictive and prescriptive
maintenance of the ICS of FIG. 1, in accordance with
implementations of the disclosure.

[0019] The figures are not exhaustive and do not limit the
disclosure to the precise form disclosed.

DETAILED DESCRIPTION

[0020] As used herein to refer to ICS network systems, the
term “computational twin” generally refers to a physical or
virtual machine that executes an original or modified version
of all or a subset of the control code of an ICS.

[0021] As used herein to refer to ICS network systems, the
term “digital twin” generally refers to a dynamic, updated
virtual representation of a physical, real-world process,
device, or system of an ICS. A digital twin may include a
virtual space that contains all of the information gathered
from a real space, including control parameters, sensor data,
and historical data for a particular device, process, or system
of the ICS. For example, a digital twin may be used to
provide a physics model representation of the operation of a
motor of the ICS. In some implementations, a digital twin
may provide a representation of the ICS as a whole. For
example, a digital twin may represent an entire facility.
[0022] Distributed I/O systems in industrial control sys-
tem (ICS) networks generally provide little data to end users.
To obtain additional data, the underlying ICS software may
need to be heavily modified. The limited computing
resources of the ICS (e.g., processing resources, memory
resources, etc.) may be unnecessarily wasted to provide the
additional data to the end users. This may be a particular
problem with legacy ICSs that cannot afford to waste
computing resources. Another problem with many onsite
ICSs is that adding more information or processing overhead
in the system to provide feedback to the user may detrimen-
tally affect the operation of the control system. A further
problem with providing data from an ICS to an end user is
that it may be difficult to access individual locations. Each
remote I/O point may be spread across the system, making
it difficult to access all of the I/O points of the ICS.
[0023] To address the aforementioned deficiencies of ICS
networks, various implementations of the disclosure are
directed to systems and methods for obtaining data from an
ICS and applying the data to a learned model to perform
predictive and prescriptive maintenance of the ICS. In
accordance with implementations of the disclosure, a net-
work tap may be provided to tap I/O data generated by the
ICS from a controller of the ICS. The tapped ICS 1/O data
may be forwarded to a server or other processing device. By
virtue of using this network tap, the ICS I/O data may be
retrieved and recorded without creating additional overhead
on the computing resources (e.g., processor) of the ICS.
[0024] In accordance with some implementations of the
disclosure, the tapped 1/O data may be processed using a
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computational twin that executes a copy of the ICS control
code. The executed copy of the ICS control code may be the
same as the original code or a modified variant of the
original code. By virtue of using a computational twin to
process the tapped I/O data, additional insights may be
gained about the ICS without adding additional processing
overhead to the ICS. For example, without being constrained
to the original ICS’s processor and memory, a computational
twin equipped with the latest processing and memory com-
ponents may compute additional information (e.g., by run-
ning the control code faster or by running a modified version
of the original code that gathers additional information).
[0025] In accordance with some implementations of the
disclosure, the tapped /O data may be used to learn one or
more models that use tapped 1/O data to provide predictive
or prescriptive maintenance notifications for the ICS. For
example, given input 1/O data tapped from an ICS, a learned
model may output text that predicts future failures of the
ICS, that predicts future maintenance events of the ICS, or
that prescribes current maintenance step(s) for the ICS. The
output text may be presented as an alert or notification that
is delivered over a communication network to a device of an
operator or manager of the ICS.

[0026] As further described below, a model may be
learned using one or more of: i) the original, tapped I/O data,
ii) the output of a computational twin that processes the
tapped 1/O data, iii) the output of a digital twin that applies
the tapped 1/O data to virtual model of a physical device,
process, or system of the ICS, and iv) human readable
control system text output extracted from the I/O data. By
virtue of considering all of these sources of data, the model
may be trained to automatically process and consider data
that was not previously considered by the ICS due to the
ICS’s computational restraints or design restraints. The use
of a learned model may efficiently and accurately identify
potential failures or problems with the ICS that were not
previously identifiable using the original ICS code or knowl-
edge of human operators of the ICS. The use of a learned
model may also reduce the frequency of false positives
during maintenance of the ICS (e.g., identification of an
issue with the ICS that is not actually present or identifica-
tion of a wrong source of the issue). Moreover, by virtue of
using a learned model that takes as an input the tapped 1/O
data, the model may be deployed on any authorized device
or server, remote or local, opening the scope of parties or
systems that assist with ICS maintenance.

[0027] These and other technical advantages that may be
realized from implementing the systems and methods
described may be further appreciated from the disclosure.
[0028] FIG. 1 depicts an example industrial control system
(ICS) network system 10 in which one or more learned
models may be used to perform predictive or prescriptive
maintenance of an ICS 100, in accordance with implemen-
tations of the disclosure. During operation, an ICS 100
generates 1/O data that is tapped by an ICS data tap 50. For
example, the ICS data tap 50 may tap data from a program-
mable logic controller (PL.C) or other controller of ICS
system 100. The tapped I/O data 130 is transmitted over a
communication network 60 from ICS data tap 50 to a system
200 for creating, training, and testing a model for predictive
maintenance (e.g., to predict future problems) or prescrip-
tive maintenance (to give guidance to correcting a problem)
of ICS 100. The tapped I/O data 130 is also transmitted over
communication network 60 to an ICS prediction and pre-
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scription system 500 that uses the model created, trained,
and tested by system 200. In some implementations, the
components of systems 200 and 500 may be integrated into
a single system. For example, the same system may create,
train, test, and use the model to provide predictive or
prescriptive maintenance of ICS 100.

[0029] ICS 100 may be any ICS including a controller
from which I/O data may be tapped. For example, ICS 100
may be an ICS for a theme park attraction (e.g., a simulation
ride, a flat ride such as a carousel or twist, a gravity ride such
as a roller coaster or water slide, a vertical ride such as a
Ferris wheel, etc.), an ICS for an elevator system, an ICS for
an air conditioning system, an ICS for a laundry system, etc.
[0030] ICS data tap 50 may be any device configured to
tap digital I/O that is received or sent by a controller or some
other component of ICS 100 during operation. ICS data tap
50 may be configured as a network forwarding device (e.g.,
a switch, a router, an access point, a gateway, etc.) that
forwards tapped /O data packets or frames to systems 200
and 500. For example, ICS data tap 50 may forward 1/O
packet information to a server or other processing device of
systems 200 and 500 that may analyze and decode the
packets. The forwarded packets may be encrypted by ICS
data tap 50 for added security.

[0031] In some implementations, I/O data may be tapped
from ICS 100 on its backplane (e.g., directly off the com-
munication bus of the control system itself). Any suitable
methods or systems may be used to acquire or otherwise tap
I/O data from ICS 100. As such, to the extent the terms
“tap,” “tapped,” or “tapping” are used to refer to /O data of
an ICS, it should be appreciated that this generally refers to
any suitable method or system for acquiring 1/O data from
any component of ICS, control system or otherwise.
[0032] Communication network 60 may comprise any
communication network suitable for transmitting tapped I/O
data 130 from ICS data tap 50 to systems 200 and 500. It
may include a combination of local area networks and a
wide area network. Some non-limiting examples of medi-
ums that may be used to communicate over network 60
include: wired communication mediums, such as cable,
fiber-optic, or DSL; or wireless communication mediums
such as WiFi, cellular communications, or satellite commu-
nications. In some implementations, systems 200 and 500
may be located on the same site as ICS 100. For example,
if ICS 100 corresponds to a theme park attraction, systems
200 and 500 may be located in the same theme park. In other
implementations, systems 200 and 500 may be remotely
located from ICS 100. For example, systems 200 and 500
may be cloud-based systems that provide for remote or
centralized management of ICS 100. In such instances, the
tapped I/O data 130 may be transmitted to the cloud-based
system (e.g., after encryption).

[0033] FIG. 2 is a block diagram illustrating an example
architecture of ICS 100, in accordance with implementations
of'the disclosure. ICS 100 includes a plurality of ICS devices
110 and a controller 120. The ICS devices 110 may include
input hardware devices that provide data and control signals
to controller 120 (e.g., switches and push buttons, sensing
devices, limit switches, proximity sensors, photoelectronic
sensors, temperature switches, level switches, pressure
switches, etc.) and output hardware devices that communi-
cate results of data processing carried by controller 120 (e.g.,
valves, motor starters, alarms, pumps, fans, control relays,
etc.).
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[0034] The ICS controller 120 includes input components
121, output components 122, a processing device 123,
machine readable medium 124, network interface 127, and
power supply 128 to supply power to the components of
controller 120. Controller may be implemented as a PLC or
other suitable ICS controller. The components of controller
120 may work together to bring data into the controller from
output ICS devices 110, evaluate that data, and send data
back out to input ICS devices 110.

[0035] Input components 121 may receive digital signal
inputs or analog signal inputs from ICS devices 110. The
analog signal inputs may represent process or machine
conditions (e.g., as a voltage range) that are converted by
circuitry of input components 121 into digital signal inputs
that processing device 123 may use.

[0036] Processing device 123 may be configured to
execute a control program or code 125 that is stored in
machine readable medium 124. For example, processing
device 123 and machine readable medium 124 may corre-
spond to a central processing unit (CPU) and its associated
memory. As it executes control code 125, processing device
123 may evaluate the status of inputs (e.g., inputs received
via input components 121), outputs, and other variables.
[0037] The processing device 123 may generate and send
control signals to control output ICS devices 110. The
control signals may pass through output components 122
that convert them into a form that can be used to control
various ICS devices 110. For example, output components
122 may convert the control signals from the processing
device into digital or analog values that may be used to
control various ICS devices 110. In some implementations,
input components 121 and output components 122 may
correspond to a plurality of /O cards that provide a data
interface between ICS devices 110 and processing device
123.

[0038] As depicted, ICS data tap 50 taps /O data 130 via
a network interface 127 of controller 120. The network
interface 127 may communicatively couple to the commu-
nication links from input components 121 and processing
device 123, and the communication links from processing
device 123 to output components 122. The tapped [/O data
130 may include any digital data generated by input com-
ponents 121 and any digital data generated by output com-
ponents 122. More generally, any of the physical and digital
information (translated or otherwise) transmitted by a com-
ponent of ICS 100 (e.g., video processing information,
velocity data, current data, voltage data, audio, accelerom-
eter data, drive data, etc.) may be tapped from ICS 100. Data
from components external to a control system of ICS 100
may be tapped. For example, consider a video display that
is utilized in ICS 100. The video display may have its own
network line that transmits data (e.g., about how video
processing projector or other device is running). Data from
this network line may be tapped as well.

[0039] FIG. 3 is a block diagram illustrating an example
architecture of a system 200 for creating, training, and
testing one or more learned models to perform predictive or
prescriptive maintenance of ICS 100, in accordance with
implementations of the disclosure. System 200 may include
a processing device 210, one or more computer readable
mediums 220, and a connection interface 230.

[0040] Connection interface 230 may be configured to
receive tapped 1/O data 130 from ICS data tap 50 over
communication network 60. Additionally, connection inter-
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face 230 may be configured to communicatively couple
system 200 to ICS prediction and prescription system 500.
For example, connection interface 230 may be configured to
transmit a file including trained model 226 to system 500. In
some implementations, connection interface 230 may com-
prise a wired interface (e.g., an Ethernet interface, a USB
interface such as a USB Type-C interface, a THUNDER-
BOLT interface, etc.). In some implementations, connection
interface 230 may comprise a wireless interface (e.g., a WiFi
communications interface, a cellular communications inter-
face, a satellite communications interface, etc.). In some
implementations, connection interface 230 may comprise a
combination of both wired and wireless interfaces.

[0041] Computer readable medium(s) 220 may store a
variety of different datasets or algorithms to perform various
methods in accordance with the disclosure. For example,
medium(s) 220 may store an ICS prediction and prescription
model 226 generated in accordance with implementations of
the disclosure. Medium(s) 220 may also store one or more
physics model(s) 227 that provide virtual representations of
one or more processes, devices, or systems of ICS 100.
Medium(s) 220 may also store a tapped ICS /O data
datastore 228 (e.g., database) that stores tapped /O data 130
received over communication network 60. In some imple-
mentations, the tapped I/O data 130 may include timestamps
or other identifiers of a sequence of time when the data was
generated. Medium(s) 220 may further store a datastore 229
including historical maintenance information of ICS 100.
The datastore 229 may include text messages relayed to
operations and maintenance of ICS 100 or workplace infor-
mation provided as part of corrective action taken to solve
or prevent a problem pertaining to ICS 100. In some
implementations, medium(s) 200 may also store one or more
additional datastores 231 of human readable text from other
sources, such as datastores used to diagnose problems in the
ICS hardware and/or software that are used by operators of
the ICS to understand an appropriate response when
addressing potential issues with the ICS. This additional
contextual data, when considered by a model for performing
prescriptive or predictive maintenance may help filter out
responses such as false positives.

[0042] Computer readable medium(s) 220 may also store
a variety of different instructions that are executable by
processing device 210 to perform various methods in accor-
dance with the disclosure. For example, medium(s) 220 may
store instructions 221 that are executable by processing
device 210 to generate an ICS dataset for building a model
226 using at least tapped /O data 130. Medium(s) 220 may
also store instructions 222 that are executable by processing
device 210 to run a computational twin that executes an
original or modified version of all or a subset of the control
code 125 of ICS 100. Medium(s) 220 may also store
instructions 223 that are executable by processing device
210 to run a digital twin that provides a virtual representa-
tion of a physical, real-world process, device, or system of
ICS 100. For example, the digital twin may provide a
physics model representation of the operation of a motor of
1ICS 100. Medium(s) 220 may also store instructions 224 that
are executable by processing device 210 to extract human
readable text output from tapped /O data. Medium(s) 220
may further store instructions 225 that are executable by
processing device 210 to test and train a model 226.

[0043] FIG. 4 is an operational flow diagram illustrating
an example method 300 for using tapped ICS 1/O data to
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generate an ICS dataset 365 that may be used for learning
one or more models (e.g., model 226) to perform prediction
and prescriptive maintenance of ICS 100, in accordance
with implementations of the disclosure. In some implemen-
tations method 300 may be implemented by a processing
device 210 executing instructions 221 and one or more of
instructions 222, 223, and 224.

[0044] At operation 310, a computational twin is run (e.g.,
by executing instructions 222) using the ICS /O data of
tapped ICS /O datastore 228. The computational twin
executes an original or modified version of all or a subset of
the control code 125 of ICS 100. The computational twin
may run using a virtual machine. For example, the compu-
tational twin may use tapped ICS 1/O data to provide an
emulation of controller 120, including input components
121, output components 122, and processing device 123. In
some implementations, the computational twin may be run
using hardware that emulates components of the control
system of the ICS (e.g., commoditized hardware that is
designed to emulate control systems). In some implemen-
tations, the computational twin may be run using a combi-
nation of virtualized and physical hardware.

[0045] The computational twin emulating the controller
120 may be configured to expand upon the human readable
textual information output by ICS 100 by virtue of not being
limited to the same bandwidth constraints of human opera-
tors reading the text. Additionally, by virtue of not having
the same memory and bandwidth constraints of controller
120 (e.g., by leveraging modern hardware components that
far exceed the processing capabilities of a legacy controller),
far greater information may be processed and output by the
computational engine of the computational twin.

[0046] In some implementations, certain routines or pro-
cesses within the original control code 125 may be run at a
greater speed or scan rate, allowing the generation of addi-
tional messages or other data. For example, while ICS
controller 120 may run one or more processes at a rate on the
scale of tens of milliseconds, the I/O data may be generated
at a much finer rate (e.g., on the scale of milliseconds or
less). By running the same process(es) on the computational
twin at a much greater rate, the computational twin may
detect a sampling discrepancy that was not detectable
because of the sampling rate of the controller (e.g., the
controller was sampling slower than it should have been, or
the controller was not capable of sampling the data any
faster). As such, by virtue of running the computational twin,
the ICS may be less susceptible to changes in /O data.

[0047] In some implementations, additional routines or
processes may be added to the control code, or original
routines or processes may be modified to provide additional
information. This may permit the generation of additional
messages that a control systems engineer would have pre-
ferred for ICS 100 but were not available due to hardware or
software programming constraints of controller 120.

[0048] The computational twin may provide an improved
mechanism of performing data analytics of ICS 100 that has
not been previously performed. By emulating/duplicating
and augmenting the operation of the control system, addi-
tional prescriptive or predictive actions may be devised for
ICS 100. In some implementations, the output of the com-
putational twin may be used for this purpose, regardless of
whether or not it is used to build a model for prescriptive and
predictive maintenance.
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[0049] In some implementations, the computational twin
may itself be configured to run some of its code based on one
or more additional data streams (input and/or output) gen-
erated by one or more sensors external to ICS 100. For
example, the one or more external sensors may be integrated
into a hardware system including the computational twin.
The one or more external hardware sensors may be config-
ured to emulate the behavior of ICS devices 110. In some
implementations, the operation of the external sensors may
be virtualized.

[0050] At operation 320, a digital twin is run (e.g., by
executing instructions 223) using the ICS I/O data of tapped
ICS I/O datastore 228. The digital twin may be run using one
or more physics models 227 that provide virtual represen-
tations of one or more processes, devices, or systems of ICS
100. For example, the digital twin may include a virtual
space that contains all of the tapped /O data for a particular
device, process, or system of ICS 100 such as control
parameters, sensor data, or historical data. The digital twin
may also run one or more physical models that represent
facility dynamics to verify operational efficiency and accu-
racy of the ICS 100 or its components.

[0051] In some implementations, the digital twin may
itself be configured to run based on one or more additional
data streams (input and/or output) generated by one or more
sensors external to ICS 100.

[0052] In some implementations, depicted by FIG. 3, the
computational twin may also run by using the output of the
digital twin, or by running the digital twin itself. The
computational twin may run the digital twin using a physics
model 227 and data output from the ICS facilities. By way
of example, consider an ICS facility at which a motor’s rate
is tracked by the control system. A model of the motor’s
encoder may be run, and its output may be fed to the
computational twin.

[0053] At operation 330, human readable text output by
1ICS 100 is extracted from the ICS I/O data of tapped ICS 1/O
datastore 228. The human readable text may include any
messages, showing the state of the ICS, that are designed to
be presented to an operations or maintenance team during
operation of —=100. During typical operation of the control
system, these messages may appear on a display. For
example, in the context of a ride system, these messages may
provide a readable textual indication to a human operator
that gates opened (e.g., “gate 3 open”), that gates are
engaged (e.g., “gate 2 engaged”), that a vehicle took a
certain amount of time to travel between two points (e.g.,
“30 seconds”), or any other human readable information that
provides an indication of what is occurring at a facility
associated with the ride system.

[0054] At operation 340, historical maintenance data of
ICS 100 is retrieved from ICS historical maintenance infor-
mation datastore 229. The historical maintenance data may
include text messages relayed to operations and maintenance
of ICS 100 or workplace information provided as part of
corrective action taken to solve or prevent a problem per-
taining to ICS 100. In some implementations, the historical
maintenance data of ICS 100 may provide a historical record
that is used to verify the output accuracy of a model trained
to perform predictive and prescriptive maintenance.

[0055] As also depicted by method 300, other /O data
may be directly extracted from I/O datastore 228.

[0056] At operation 350, the ICS dataset is cleaned or
normalized. For example, in some implementations, catego-
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ries of data may be merged into a single feature. As another
example, categories of data that are less likely to be relevant
to the maintenance of ICS 100 may be removed or weighed
with less priority from the dataset to focus the subsequent
machine learning process on training data including key
features that are likely to be indicative of predictive or
prescriptive maintenance of ICS 100. Categories of feature
data that are more likely to be indicative of maintenance of
the ICS 100 may be weighed with high priority. For
example, the output of running the computational twin at
operation 310 or ICS historical maintenance data retrieved at
operation 340 may be emphasized over some other feature
data. In some implementations, categories of feature data
may be split into multiple features. It should be noted that
cleaning operation 350 may be performed concurrently with
operations 310-340 or after operations 310-340. It should
also be noted that operations 310-340 may be performed in
any order or concurrently.

[0057] Following extraction of feature data, it may be
stored/cataloged in a database/library or other datastore 360
as an extracted ICS dataset 365 that may be used to train and
test one or more machine learning models used to provide
prescriptive or predictive maintenance of ICS 100 given
tapped ICS 1/O data. For example, as further discussed
below, given tapped ICS I/O data that is used to run a
computational twin 310, the model may predict future
maintenance events of ICS 100. It should be noted that
process 300 may be iterated over time to refine the dataset
used to train and test the aforementioned machine learning
models. For example, over time it may be discovered that
certain categories of feature data (e.g., output of running
computational twin) are more likely to be indicative of
maintenance events. Further, as additional /O data is tapped
for ICS 100, ICS dataset 365 may be expanded. As such, it
should be appreciated that the features, categorization, and
size of the extracted ICS dataset 365 may change over time.
[0058] It should be appreciated that although method 300
is described in the context of building a dataset for model
learning from five different inputs (i.e., output of each of
operations 310-340 and datastore 228), fewer than five of
these inputs (e.g., four, three, two, or one) or more than five
of these inputs (e.g., input from additional datastore 231,
described above) may be used to create the dataset. For
example, ICS dataset 365 may be generated using only the
output of running computational twin 310. It should also be
appreciated that the types of data that may be extracted from
ICS 1/O datastore 228 are illustrative, and that other types of
ICS T/O data may be extracted.

[0059] FIG. 5 is an operational flow diagram illustrating
an example method 400 for creating, training, and testing
one or more models that uses tapped /O data to perform
predictive and prescriptive maintenance of ICS 100, in
accordance with implementations of the disclosure. In some
implementations method 400 may be implemented by a
processing device 210 executing instructions 225.

[0060] At operation 410, the extracted ICS dataset 365
stored in a datastore 360 may be split into a training dataset
and testing dataset. In implementations, each of the training
dataset and testing dataset may comprise a subset of the
output of performing one or more of operations 310-330 on
this tapped 1/O data, and known predictive or prescriptive
maintenance action(s) that was taken in the past at the time
that the tapped I/O data was gathered (e.g., as determined
from operation 340). In implementations, the training data-
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set may comprise a majority of the dataset (e.g., 60%, 70%,
80%, etc.). In implementations, the datasets may be ran-
domized, prior to splitting, to ensure an equal distribution of
patterns of data.

[0061] At operation 420, a machine learning model may
be initialized to perform training using the training dataset.
The model may be selected to find patterns/trends between
the output of one or more of operations 310-330, and a
maintenance event that was performed at ICS 100 at the
same time (e.g. as determined by operation 340). The model
may also be selected to find patterns/trends between the
output of the raw 1/O data and a maintenance event that was
performed at ICS 100 at the same time.

[0062] In implementations, the model may be initialized
by selecting one or more supervised learning algorithms that
learn patterns using known inputs and known outputs. For
example, in some implementations a known input may
include an output of running a computational twin or digital
twin on a set of tapped 1/O data retrieved during a particular
time period, and a known output may include a maintenance
event that was detected or prescribed during the same time
period.

[0063] Supervised learning algorithms such as linear
regression, logistic regression, decision trees, k-nearest
neighbors, neural networks, and/or support vector machines
may be utilized. During initialization, hyperparameters of
the algorithms may be set. In some implementations, an
ensemble model that combines multiple statistical modeling
techniques may be utilized. For example, bagging (averag-
ing of multiple models), a bucket of models (using training
data to create different models, and then picking the best
one), boosting, stacking, or other ensemble model tech-
niques may be utilized.

[0064] In some implementations, unsupervised learning
algorithms may be utilized to initialize the model. For
example, k-means clustering, principal and independent
component analysis, association rules, or other suitable
unsupervised learning algorithms may be used. In some
implementations, semi-supervised learning algorithms or a
combination of supervised and unsupervised learning algo-
rithms may be used.

[0065] At operation 430, the model may be trained using
the training dataset. For example, using one or more of the
aforementioned supervised learning algorithms, a machine
may analyze and determine relationships between the output
of one or more of running the computational twin on the
tapped I/O data, running the digital twin on the tapped I/O
data, and the human readable ICS text extracted from the I/O
data in the training data to develop a model that may predict
maintenance event data given this input data.

[0066] At operation 440, the model developed during
training may be tested using the testing dataset. For
example, given the output of performing one or more of
operations 310-330 on a particular set of tapped /O data
corresponding to a particular time period, that data may be
provided to the trained model to predict data of a predictive
or prescriptive maintenance event for ICS 100 for the same
time period. The data of the predictive or prescriptive
maintenance event that is calculated by the model may
thereafter be compared with an actual, known maintenance
event in the testing dataset from the same time period event
(e.g., as determined from operation 340) to determine an
accuracy of the model.
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[0067] In implementations, the performance of the model
may be calculated from testing as an average error score for
all predictions. If the average error score is too high,
additional iterations of method 400 (and optionally, method
300) may be performed. For example, hyperparameters of
the algorithms used in the model may be adjusted, the
algorithms of the model may be changed, and/or different
features of data may be considered in the model. Alterna-
tively, if the mean absolute error is satisfactory, the model
(e.g., model 226) may be made available to system 500 to
provide predictive and prescriptive maintenance of ICS 100.

[0068] In some implementations of method 400, different
models may be trained, tested, and/or developed. For
example, separate models may be created to predict or
prescribe maintenance events based on the outputs of a
computational twin and a digital twin. In some implemen-
tations of method 400, a cross validation process may be
performed whereby training and testing data is split into
various combinations and trained and tested in these various
combinations. For example, an exhaustive cross validation
or k-fold validation process may be performed.

[0069] FIG. 6 is a block diagram illustrating an example
architecture of ICS prediction and prescription system 500,
in accordance with implementations of the disclosure. Sys-
tem 500 may include a processing device 510, one or more
computer readable mediums 520, and a connection interface
530.

[0070] Connection interface 530 may be configured to
receive tapped 1/O data 130 from ICS data tap 50 over
communication network 60. Additionally, connection inter-
face 530 may be configured to communicatively couple
system 500 to system 200 for creating, training, and testing
a model. For example, connection interface 530 may be
configured to receive a file including trained model 226 from
system 200. In some implementations, connection interface
530 may comprise a wired interface (e.g., an Ethernet
interface, a USB interface such as a USB Type-C interface,
a THUNDERBOLT interface, etc.). In some implementa-
tions, connection interface 530 may comprise a wireless
interface (e.g., a WiFi communications interface, a cellular
communications interface, a satellite communications inter-
face, etc.). In some implementations, connection interface
530 may comprise a combination of both wired and wireless
interfaces.

[0071] Computer readable medium(s) 520 may store a
variety of different datasets or algorithms to perform various
methods in accordance with the disclosure. For example,
medium(s) 520 may store an ICS prediction and prescription
model 226 generated in accordance with implementations of
the disclosure. Medium(s) 520 may also store one or more
physics model(s) 227 that provide virtual representations of
one or more processes, devices, or systems of ICS 100.
Medium(s) 520 may also store a tapped ICS /O data
datastore 527 (e.g., database) that stores tapped I/O data 130
received over communication network 60. In some imple-
mentations, the tapped I/O data 130 may include timestamps
or other identifiers of a sequence of time when the data was
generated. In some implementations, the datastore may only
store tapped /O data 130 received with a particular time
period (e.g., within the past week, within the past month,
with the past year, etc.). In some implementations, medium
(s) 520 may also store one or more additional datastores 231
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of human readable text from other sources or datastore 229
of ICS historical maintenance information (not shown in
FIG. 6) as described above.

[0072] Computer readable medium(s) 520 may also store
a variety of different instructions that are executable by
processing device 510 to perform various methods in accor-
dance with the disclosure. For example, medium(s) 520 may
store instructions 521 that are executable by processing
device 510 to use at least a trained model (e.g., model 226)
to predict events (e.g., failures) or prescribe maintenance for
1ICS 100. Medium(s) 520 may also store instructions 522 that
are executable by processing device 510 to run a computa-
tional twin that executes an original or modified version of
all or a subset of the control code 125 of ICS 100. Medium
(s) 520 may also store instructions 523 that are executable by
processing device 510 to run a digital twin that provides a
virtual representation of a physical, real-world process,
device, or system of ICS 100. For example, the digital twin
may provide a physics model representation of the operation
of a motor of ICS 100. Medium(s) 520 may also store
instructions 524 that are executable by processing device
510 to extract human readable text output from tapped /O
data.

[0073] FIG. 7 is an operational flow diagram illustrating
an example method 600 for using tapped ICS I/O data and
one or more models 226 to perform predictive and prescrip-
tive maintenance of ICS 100, in accordance with implemen-
tations of the disclosure. In some implementations, method
600 may be implemented by a processing device 510
executing instructions 521 and one or more of instructions
522, 523, and 524.

[0074] At operation 610, a computational twin is run (e.g.,
by executing instructions 522) using the ICS /O data of
tapped ICS /O datastore 527. The computational twin
executes an original or modified version of all or a subset of
the control code 125 of ICS 100. The computational twin
may be run using a virtual machine that uses tapped ICS I/O
data to provide an emulation of controller 120, including
input components 121, output components 122, and pro-
cessing device 123. In some implementations, the compu-
tational twin may be run using hardware that emulates
components of the control system of the ICS, or using a
combination of virtualized and physical hardware.

[0075] The computational twin emulating the controller
120 may be configured to expand upon the human readable
textual information output by ICS 100 by virtue of not being
limited to the same bandwidth constraints of human opera-
tors reading the text. Additionally, by virtue of not having
the same memory and bandwidth constraints of controller
120 (e.g., by leveraging modern hardware components that
far exceed the processing capabilities of a legacy controller),
far greater information may be processed and output by the
computational engine of the computational twin. For
example, certain routines or processes within the original
control code 125 may be run at a far greater speed or scan
rate, allowing the generation of additional messages or other
data. In some implementations, additional routines or pro-
cesses may be added to the control code, or original routines
or processes may be modified to provide additional infor-
mation. This may permit the generation of additional mes-
sages that a control systems engineer would have preferred
for ICS 100 but were not available due to hardware or
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software programming constraints of controller 120. In
some implementations, the computational twin may be run
using specialized hardware.

[0076] The computational twin may provide an improved
mechanism of performing data analytics of ICS 100 that has
not been previously performed. By emulating/duplicating
and augmenting the operation of the control system, addi-
tional prescriptive or predictive actions may be devised for
ICS 100. In some implementations, the output of the com-
putational twin may be used for this purpose, regardless of
whether or not a model is used for prescriptive and predic-
tive maintenance.

[0077] In some implementations, the computational twin
may itself be configured to run some of its code based on one
or more additional data streams (input and/or output) gen-
erated by one or more sensors external to ICS 100. For
example, the one or more external sensors may be integrated
into a hardware system including the computational twin.
The one or more external hardware sensors may be config-
ured to emulate the behavior of ICS devices 110. In some
implementations, the operation of the external sensors may
be virtualized.

[0078] At operation 620, a digital twin is run (e.g., by
executing instructions 523) using the ICS I/O data of tapped
ICS I/O datastore 527. The digital twin may be run using one
or more physics models 227 that provide virtual represen-
tations of one or more processes, devices, or systems of ICS
100. For example, the digital twin may include a virtual
space that contains all of the tapped 1/O data for a particular
device, process, or system of ICS 100 such as control
parameters, sensor data, or historical data. The digital twin
may also run one or more physical models that represent
facility dynamics to verify operational efficiency and accu-
racy of the ICS 100 or its components.

[0079] In some implementations, the digital twin may
itself be configured to run based on one or more additional
data streams (input and/or output) generated by one or more
sensors external to ICS 100. In some implementations,
depicted by FIG. 7, the computational twin may also run by
using the output of the digital twin, or by running the digital
twin itself. The computational twin may run the digital twin
using a physics model 227 and data output from the ICS
facilities.

[0080] At operation 630, human readable text output by
ICS 100 is extracted from the ICS I/O data of tapped ICS /O
datastore 527. The human readable text may include any
messages, showing the state of the ICS, that are designed to
be presented to an operations or maintenance team during
operation of ICS 100. During typical operation of the control
system, these messages may appear on a display. For
example, in the context of a ride system, these messages may
provide a readable textual indication to a human operator
that gates have opened (e.g., “gate 3 open”), that gates are
engaged (e.g., “gate 2 engaged”), that a vehicle took a
certain amount of time to travel between two points (e.g.,
“30 seconds”), or any other human readable information that
provides an indication of what is occurring at a facility
associated with the ride system.

[0081] At operation 640, a model 226 is used to predict a
future event pertaining to ICS 100 or to prescribe mainte-
nance of ICS 100. For example, given the input of one or
more of running operations 610-630 and datastore 527, a
learned model 226 may output text that predicts future
events 641 (e.g., failures) of the ICS 100, that predicts future
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maintenance events of the ICS 100, or that prescribes
maintenance 642 (e.g., maintenance step(s)) for the ICS 100.
The output text (e.g., text 641 or 642) may be presented as
an alert or notification that is delivered over a communica-
tion network to a device of an operator or manager of the
ICS. For example, the alert or notification may be delivered
to an application running on a mobile device of the operator
or manager.

[0082] It should be appreciated that although method 600
is described in the context of using a model 226 that takes
four different inputs (i.e., output of each of operations
610-630 and datastore 527), to make a prediction or pre-
scription relating to maintenance of ICS 100, fewer than four
of these inputs (e.g., three, two, or one) or more than four
these inputs (e.g., input from additional datastore 231,
described above) may be used. For example, in some
implementations, model 226 may be configured to map the
output of running computational twin 610 on tapped I/O data
to a predictive or prescriptive maintenance event. In such
implementations, operation 640 may use only the output of
operation 610 and model 226 to output a predicted event 641
or prescribed maintenance 642.

[0083] To illustrate the operation of the systems and
methods described herein, consider an ICS 100 correspond-
ing to an elevator or vertical conveyance. Before a guest
walks into the elevator, the guest selects a button for the
elevator to up or down. This is an input to the controller 120
of the ICS 100 that may send an output to the motor and to
the elevator to indicate what direction to travel based on
what floor the guest is on. This selection may cause the
controller 120 to send a human readable control system
output that says “moving elevator to floor x.” This output
may be part of tapped I/O data 130. A computational twin,
running on a remote or local system 500 that receives tapped
1/O data 130, seeing that same input, may also send that
same message out, but that message may also be input to a
trained model. In addition, there may be another set of
messages (e.g., messages indicating locations of other eleva-
tors, how many people are waiting for the elevator, etc.) that
would be useful, but for one reason or another are not output
by running the code of controller 120. By contrast, the
computational twin may be configured to also output these
sets of messages.

[0084] A digital twin, running on a remote or local system
500 that receives tapped 1/O data 130, may use a physics
model to monitor the movement of the elevator car and
speed at which it is moving to determine if it matches what
it should be for the motor. For example, the output data may
be obtained by feedback of the elevator motor’s encoder that
sends digital information about elevator speed (e.g., in
millisecond intervals). For example, if the motor data indi-
cates that the field current is not what it should be, a future
failure may be predicted.

[0085] Maintenance work orders pertaining to past main-
tenance of the elevator system may be used to build a
predictive and prescriptive maintenance model.

[0086] After the elevator vehicle reaches the desired floor
and the doors open, the controller 120 may send a human
readable message indicating that the doors are opening. The
computational twin, in addition to indicating that the doors
are opening, may be configured to provide other information
such as the rate at which the elevator moved and any other
tens or even hundreds of messages that were not included in
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the operation of the control system. The digital twin may
examine the rate that the doors open to determine that they
run correctly.

[0087] In this document, the terms “machine readable
medium,” “computer readable medium,” and similar terms
are used to generally refer to non-transitory mediums, vola-
tile or non-volatile, that store data and/or instructions that
cause a machine to operate in a specific fashion. Common
forms of machine readable media include, for example, a
hard disk, solid state drive, magnetic tape, or any other
magnetic data storage medium, an optical disc or any other
optical data storage medium, any physical medium with
patterns of holes, a RAM, a PROM, EPROM, a FLASH-
EPROM, NVRAM, any other memory chip or cartridge, and
networked versions of the same.

[0088] These and other various forms of computer read-
able media may be involved in carrying one or more
sequences of one or more instructions to a processing device
for execution. Such instructions embodied on the medium,
are generally referred to as “instructions” or “code.” Instruc-
tions may be grouped in the form of computer programs or
other groupings. When executed, such instructions may
enable a processing device to perform features or functions
of the present application as discussed herein.

[0089] In this document, a “processing device” may be
implemented as a single processor that performs processing
operations or a combination of specialized and/or general-
purpose processors that perform processing operations. A
processing device may include a CPU, GPU, APU, DSP,
FPGA, ASIC, SOC, and/or other processing circuitry.

[0090] The various embodiments set forth herein are
described in terms of exemplary block diagrams, flow
charts, and other illustrations. As will become apparent to
one of ordinary skill in the art after reading this document,
the illustrated embodiments and their various alternatives
can be implemented without confinement to the illustrated
examples. For example, block diagrams and their accompa-
nying description should not be construed as mandating a
particular architecture or configuration.

[0091] Each of the processes, methods, and algorithms
described in the preceding sections may be embodied in, and
fully or partially automated by, code components executed
by one or more computer systems or computer processors
comprising computer hardware. The one or more computer
systems or computer processors may also operate to support
performance of the relevant operations in a “cloud comput-
ing” environment or as a “software as a service” (SaaS). The
processes and algorithms may be implemented partially or
wholly in application-specific circuitry. The various features
and processes described above may be used independently
of one another, or may be combined in various ways.
Different combinations and sub-combinations are intended
to fall within the scope of this disclosure, and certain method
or process blocks may be omitted in some implementations.
Additionally, unless the context dictates otherwise, the
methods and processes described herein are also not limited
to any particular sequence, and the blocks or states relating
thereto can be performed in other sequences that are appro-
priate, or may be performed in parallel, or in some other
manner. Blocks or states may be added to or removed from
the disclosed example embodiments. The performance of
certain of the operations or processes may be distributed



US 2021/0157302 Al

among computer systems or computers processors, not only
residing within a single machine, but deployed across a
number of machines.

[0092] As used herein, the term “or” may be construed in
either an inclusive or exclusive sense. Moreover, the
description of resources, operations, or structures in the
singular shall not be read to exclude the plural. Conditional
language, such as, among others, “can,” “could,” “might,” or
“may,” unless specifically stated otherwise, or otherwise
understood within the context as used, is generally intended
to convey that certain embodiments include, while other
embodiments do not include, certain features, elements
and/or steps.

[0093] Terms and phrases used in this document, and
variations thereof, unless otherwise expressly stated, should
be construed as open ended as opposed to limiting. Adjec-
tives such as “conventional,” “traditional,” “normal,” “stan-
dard,” “known,” and terms of similar meaning should not be
construed as limiting the item described to a given time
period or to an item available as of a given time, but instead
should be read to encompass conventional, traditional, nor-
mal, or standard technologies that may be available or
known now or at any time in the future. The presence of
broadening words and phrases such as “one or more,” “at
least,” “but not limited to” or other like phrases in some
instances shall not be read to mean that the narrower case is
intended or required in instances where such broadening
phrases may be absent.

What is claimed is:

1. A method, comprising:

tapping input/output (I/O) data from a controller of an

industrial control system (ICS) while the controller
executes first control code to control one or more ICS
devices of the ICS;

transmitting the tapped I/O data over a communications

network to a second system; and

executing, via the second system, second control code

comprising an original or modified version of all or a
subset of the first control code of the ICS, wherein the
second control code executes in response to receiving
the tapped 1/O data.

2. The method of claim 1, wherein the second control
code is configured to execute a process of the first control
code at a faster rate than it is executed by the first control
code.

3. The method of claim 1, wherein the second control
code is configured to execute a process that is not executed
by the first control code.

4. The method of claim 3, where execution of the first
control code by the ICS generates a first human readable ICS
text output providing an indication of a first parameter of the
ICS, and wherein execution of the second control code
generates the first human readable ICS text output and a
second human readable ICS text output providing an indi-
cation of a second parameter of the ICS, wherein the second
human readable ICS text output is not generated by execu-
tion of the first control code.

5. The method of claim 1, wherein the controller is a
programmable logic controller.

6. The method of claim 5, wherein the second control
code is executed using a virtual machine of the second
system.

7. The method of claim 6, wherein the virtual machine is
configured to use the tapped 1/O data to emulate a processing
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device of the controller, input components of the controller,
and output components of the controller.

8. The method of claim 1, further comprising: providing
an output of the execution of the second control code to a
trained model to predict a future event involving the ICS or
to prescribe maintenance of the ICS.

9. The method of claim 1, further comprising: running, via
the second system, a digital twin that provides a virtual
representation of a device, process, or system of the ICS,
wherein the digital twin is run using the tapped I/O data.

10. The method of claim 9, further comprising: providing
1) an output of the execution of the second control code and
i) an output of running the digital twin to a trained model
to predict a future event involving the ICS or to prescribe
maintenance of the ICS.

11. The method of claim 9, wherein the digital twin
provides the virtual representation using one or more phys-
ics models representing the device, process, or system.

12. The method of claim 9, further comprising: extracting,
via the second system, human readable text output from the
tapped /O data, wherein the human readable text output
provides an indication of a parameter of the ICS.

13. The method of claim 12, further comprising: provid-
ing 1) an output of the execution of the second control code
and ii) an output of running the digital twin; and iii) the
extracted human readable text output to a trained model to
predict a future event involving the ICS or to prescribe
maintenance of the ICS.

14. A non-transitory computer-readable medium having
executable instructions stored thereon that, when executed
by a processor, performs operations of:

receiving at a second system, over a communications

network, input/output (I/O) data tapped from a control-
ler of an industrial control system (ICS) while the
controller executes first control code to control one or
more ICS devices of the ICS; and

executing, via the second system, second control code

comprising an original or modified version of all or a
subset of the first control code of the ICS, wherein the
second control code executes in response to receiving
the tapped 1/O data.

15. The non-transitory computer-readable medium of
claim 14, wherein the second control code is configured to:
execute a process of the first control code at a faster rate than
it is executed by the first control code; or execute a process
that is not executed by the first control code.

16. The non-transitory computer-readable medium of
claim 15, where execution of the first control code by the
ICS generates a first human readable ICS text output pro-
viding an indication of a first parameter of the ICS, and
wherein execution of the second control code generates the
first human readable ICS text output and a second human
readable ICS text output providing an indication of a second
parameter of the ICS, wherein the second human readable
ICS text output is not generated by execution of the first
control code.

17. The non-transitory computer-readable medium of
claim 14, wherein the second control code is executed using
a virtual machine of the second system, wherein the virtual
machine is configured to use the tapped 1/O data to emulate
a processing device of the controller, input components of
the controller, and output components of the controller.

18. The non-transitory computer-readable medium of
claim 14, wherein the instructions, when executed by the
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processor, further perform an operation of: providing an
output of the execution of the second control code to a
trained model to predict a future event involving the ICS or
to prescribe maintenance of the ICS.

19. The non-transitory computer-readable medium of
claim 14, wherein the instructions, when executed by the
processor, further perform an operation of: running, via the
second system, a digital twin that provides a virtual repre-
sentation of a device, process, or system of the ICS, wherein
the digital twin is run using the tapped I/O data.

20. A system, comprising:

an industrial control system (ICS) comprising:
one or more ICS devices; and
a controller configured to execute first control code to

control the one or more ICS devices, wherein execu-
tion of the first control code causes the ICS to
generate input/output (I/0) data;

a network data tap configured to tap the 1/O data from the
controller and transmit the tapped /O data to a second
system over a communications network; and

the second system, wherein the second system is config-
ured to execute second control code comprising an
original or modified version of all or a subset of the first
control code, wherein the second control code executes
in response to receiving the tapped I/O data.

#* #* #* #* #*



